Top Publications
Ordered by year and author
Ruotsalainen, H., Zhang, J., & Grebeniuk, S. (2019). Experimental Investigation on Wireless Key Generation for Low Power Wide Area Networks. IEEE Internet of Things Journal.
Tavolato-Wötzl, C., & Tavolato, P. (2019, February). Analytical Modelling of Cyber-Physical Systems. Proceedings of the 5th International Conference on Information Systems Security and Privacy - ICISSP 2019, 3rd International Workshop on FORmal Methods for Security Engineering - ForSE 2019.
Wenzl, M., Merzdovnik, G., Ullrich, J., & Weippl, E. (2019). From Hack to Elaborate Technique—A Survey on Binary Rewriting. ACM Computing Surveys, 52(3 / Artikel 49).
Amiri, F., Quirchmayr, G., & Kieseberg, P. (2018). A Machine Learning Approach for Privacy-preservation in E-business Applications: Proceedings of the 15th International Joint Conference on E-Business and Telecommunications, 443–452.
CD-MAKE. (2018). Machine learning and knowledge extraction: Second IFIP TC 5, TC 8/WG 8.4, 8.9, TC 12.9, International Cross-Domain Conference, CD-MAKE 2018, Hamburg, Germany, August 27–30, 2018: proceedings (A. Holzinger, P. Kieseberg, A. M. Tjoa, & E. R. Weippl, Eds.). Springer.
Holzinger, A., Kieseberg, P., Weippl, E., & Tjoa, A. M. (2018). Current Advances, Trends and Challenges of Machine Learning and Knowledge Extraction: From Machine Learning to Explainable AI. In A. Holzinger, P. Kieseberg, A. M. Tjoa, & E. Weippl (Eds.), Machine Learning and Knowledge Extraction (Vol. 11015, pp. 1–8). Springer International Publishing.
Goebel, R., Chander, A., Holzinger, K., Lecue, F., Akata, Z., Stumpf, S., Kieseberg, P., & Holzinger, A. (2018). Explainable AI: The New 42? In A. Holzinger, P. Kieseberg, A. M. Tjoa, & E. Weippl (Eds.), Machine Learning and Knowledge Extraction (Vol. 11015, pp. 295–303). Springer International Publishing.
Kieseberg, P., Schrittwieser, S., & Weippl, E. (2018). Structural Limitations of B+-Tree forensics. Proceedings of the Central European Cybersecurity Conference 2018 on - CECC 2018, 1–4.
Kubler, S., Robert, J., Neumaier, S., Umbrich, J., & Le Traon, Y. (2018). Comparison of metadata quality in open data portals using the Analytic Hierarchy Process. Government Information Quarterly, 35(1), 13–29.
Luh, R., Schramm, G., Wagner, M., Janicke, H., & Schrittwieser, S. (2018). SEQUIN: a grammar inference framework for analyzing malicious system behavior. Journal of Computer Virology and Hacking Techniques, 01–21.
Rauchberger, J., Schrittwieser, S., Dam, T., Luh, R., Buhov, D., Pötzelsberger, G., & Kim, H. (2018). The Other Side of the Coin: A Framework for Detecting and Analyzing Web-based Cryptocurrency Mining Campaigns. Proceedings of the 13th International Conference on Availability, Reliability and Security. ARES 2018, Hamburg, Deutschland.
Luh, R., Schrittwieser, S., & Marschalek, S. (2017). LLR-based Sentiment Analysis for Kernel Event Sequences. 31th International Conference on Advanced Information Networking and Applications.
Rauchberger, J., Luh, R., & Schrittwieser, S. (2017). Longkit - A Universal Framework for BIOS/UEFI Rootkits in System Management Mode. Third International Conference on Information Systems Security and Privacy, Madeira, Portugal.
Luh, R., Marschalek, S., Kaiser, M., Janicke, H., & Schrittwieser, S. (2016). Semantics-aware detection of targeted attacks – A survey. Journal of Computer Virology and Hacking Techniques, 1–39.
Neumaier, S., Umbrich, J., Parreira, J. X., & Polleres, A. (2016). Multi-level Semantic Labelling of Numerical Values. The Semantic Web – ISWC 2016, 428–445.
Neumaier, S., Umbrich, J., & Polleres, A. (2016). Automated Quality Assessment of Metadata across Open Data Portals. ACM Journal of Data and Information Quality (JDIQ), Journal of Data and Information QualityVolume 8Issue 1(Journal of Data and Information QualityVolume 8Issue 1), pp 1-29.
Schrittwieser, S., Katzenbeisser, S., Kinder, J., Merzdovnik, G., & Weippl, E. (2016). Protecting software through obfuscation: Can it keep pace with progress in code analysis. Computing Surveys, 49(1).
Priebe, T., & Markus, S. (2015). Business Information Modeling: A Methodology for Data-Intensive Projects, Data Science and Big Data Governance. 2015 IEEE International Conference on Big Data (Big Data), IEEE, 2056–2065.
Wagner, M., Fischer, F., Luh, R., Haberson, A., Rind, A., Keim, D. A., & Aigner, W. (2015). A Survey of Visualization Systems for Malware Analysis. In R. Borgo, F. Ganovelli, & I. Viola (Eds.), Eurographics Conference on Visualization (EuroVis) - STARs (pp. 105–125). The Eurographics Association.
Wagner, M., Aigner, W., Rind, A., Dornhackl, H., Kadletz, K., Luh, R., & Tavolato, P. (2014). Problem Characterization and Abstraction for Visual Analytics in Behavior-Based Malware Pattern Analysis. In L. Harrison (Ed.), Proceedings of the Eleventh Workshop on Visualization for Cyber Security (pp. 9–16). ACM.